BORGWARNER

Charging forward

to bring innovative solutions to market

2024 ARCTIC DRIVE BorgWarner Winter Development Facility, Arjeplog

February - March 2024

CHARGING FORWARD

INNOVATIVE and SUSTAINABLE MOBILITY TECHNOLOGIES The NOW and the FUTURE

TECHNOLOGY DEMONSTRATION DRIVE

FEEDACK and CURRENT TOPICS

WRAP-UP

Electric Vehicle Technology*

 $\ensuremath{\mathbb{C}}$ 2024 BorgWarner Arctic Drive

Foundational Technology

© 2024 BorgWarner Arctic Drive

Commercial Vehicle Technology

© 2024 BorgWarner Arctic Drive

CEO Organization Chart

Fred Lissalde **President & Chief Executive Officer**

Julie Piazza Sr. Executive Assistant

Dr. Stefan Demmerle Vice President of BorgWarner Inc. and President and GM PowerDrive Systems

Isabelle McKenzie Vice President of BorgWarner Inc. and President and GM Morse Systems

Kevin Nowlan Executive Vice President and Chief **Financial Officer**

President and Chief

Paul Farrell

Executive Vice

Tonit Calaway Executive Vice President. Chief Administrative Officer, General Counsel and Secretary

Tania Wingfield Executive Vice President and Chief Human **Resources** Officer

Joseph (Joe) Fadool Vice President of BorgWarner Inc. and President and GM Emissions, Thermal and Turbo Systems

Dr. Volker Weng Vice President of BorgWarner Inc. and President and GM Drivetrain and Battery Systems

Tom Tan Vice President and President BorgWarner China

Sustainability Strategy

Create a Cleaner, More **Energy-Efficient World**

Continue

Accelerating Electrification Offerings

Delivering Products for Improved Efficiency and Reduced Emissions

Advance

Expansion of eMobility Market Offerings Environmental Product Stewardship **Environmental Aspects of Operations**

BorgWarner Beliefs

Continue

Employee Health & Safety

Community Education, Equity and **Economics**

Advance

Diversity, Equity & Inclusion **Building the Talent Pipeline** Evolving the Skills Engaging our People

Partner with and **Report to Stakeholders**

Continue

Ethics & Compliance Product Safety & Quality Data Privacy & Cybersecurity

Advance

Sustainable Value Chain Tech-driven Innovation

© 2024 BorgWarner Arctic Drive

ETC Today

Location Landskrona, Sweden

~ 200 Engineers 21% Female

DBS and PDS

Since 1998

STRATEGIES

CHARGING FORWARD 2027

Product Leadership

Innovation

Sustainability

Power to Evolve Competence Transition

© 2024 BorgWarner Arctic Drive

THE HISTORY Strong Legacy Of Innovation

© 2024 BorgWarner Arctic Drive

eTMS

BORGWARNER

Technology Trends

Technology Trends:

- Established and proposed regulations will drive higher electrification levels.
- Fleet compliance in major markets will require solutions that go beyond full hybrids

Sustainability focus

- At vehicle and component level, sustainability based on LCA becomes an objective, not an afterthought
- This drives design and sourcing choices involving cost and performance tradeoffs

SW defined vehicles

- SW becomes more and more a differentiator and drives customer buying decisions
- Separation of HW & SW development opens system improvement opportunities

Technology Trends:

Controller Architectures

- Simplification and centralization of domain controllers
- Increase in on-board computing power
- Future introduction of Ethernet

LV bus moves to 48V

- 48V allows to increase the LV bus power without a significant wiring penalty
- Higher computing power needs and auxiliary systems associated with ADAS and safety are the main drivers

High efficiency

- System efficiency is key for electrified vehicles
- Strategies to push the efficiency boundaries at component and system level involve both HW & SW solutions

Technology Trends:

- Optimization in the use of available thermal sources
- Integration of thermal management system and powertrain components
- New refrigerants

•

Charging power and alternatives

- DCFC power and availability increases significantly
- Vehicle capacity to charger at higher C-rates follows through
- Wireless charging starts to gain traction in some applications and use cases

Materials development

- Strong research focus on materials and methods to improve performance, sustainability and efficiency
- Battery chemistry, high Si-Steel, magnets with low/no RE, conductors with higher conductivity than copper, etc.

BORGWARNER

Market Trends

Global LV Propulsion Outlook

- Slowed market recovery from COVID-19 pandemic due to continued supply chain disruptions
- Weakened long term macro environment due in part to widening impacts of Russia/ Ukraine crisis (nat. gas supply) and elevated inflation
- C & ICEs (C+H) volume peaks in 2017
- xEV passes C in 2025

Units (M)

*Baseline Fcst.

Global LV Propulsion Outlook

Global LV Propulsion Outlook - China

- Stimulus effects and indications of changes in BEV availability/preference boost volumes in outer years

Global LV Propulsion Outlook - Europe

Despite short term improvement, potential downside risk remains as a result of Ukraine crisis Mid/Long-term outlook weighted by weakening macro setting Aggressive CO2 targets and diesel city bans requires more NEVs (EVs+PHEVs) 22.2 22.0 21.1 2% 18.3 18.3 18.3 18.1 18.0 17.4 17.4 17.4 17.5 17.8 17.2 16.6 15.9 15.8

BORGWARNER

*Baseline Fcst.

© 2024 BorgWarner Arctic Drive

21.5

21.0

-

_

-

20.1

19.5

Units (M)

30

25

20

Global LV Propulsion Outlook - North America

BORGWARNER

*Baseline Fcst.

© 2024 BorgWarner Arctic Drive

Global LV Propulsion Outlook - Japan

BORGWARNER

*Baseline Fcst.

© 2024 BorgWarner Arctic Drive

EV Torque Management Systems

Vehicle introduction

Introduction Electric Vehicles

Challenges

- High driveline torque capacity with fast response times
- ► Higher vehicle weight
- Increased stress to the tires

Torque Management Solutions

- Torque distribution to the wheel with best influence of vehicle behavior
- ► Increased vehicle stability
- Improved traction during launch and increased acceleration capacity

Basic Tire Theory The Friction Circle

- The lateral and longitudinal grip of the tires can simplified be described by the friction circle
- If consuming more of the longitudinal level of grip, the available lateral grip level will also be reduced

Basic Tire Theory The Friction Circle

- The lateral and longitudinal grip of the tires can simplified be described by the friction circle
- If consuming more of the longitudinal level of grip, the available lateral grip level will also be reduced

Basic Tire Theory The Friction Circle

- The lateral and longitudinal grip of the tires can simplified be described by the friction circle
- If consuming more of the longitudinal level of grip, the available lateral grip level will also be reduced

Open Differential Basic Functions

- Allow different rotational speed on left and right wheels to enable cornering without windup
- Enables same torque transfer to inner and outer wheel during straight ahead driving and driving around corners

$$\omega_{Input} = \frac{\omega_{Left} + \omega_{Right}}{2}$$

BORGWARNER

Torque Management Systems Portfolio – Roadmap – Advanced

Torque Management Systems Overview

Torque Management Systems eXD – electric Cross Drive

Hardware Description eXD – electric Cross Drive

Torque Path, System Inactive eXD – electric Cross Drive

Torque Path, System Active eXD – electric Cross Drive

Torque Management Systems eTVD – electric Torque Vectoring and Disconnect

System Active eTVD – electric Torque Vectoring and Disconnect

- More precise speed & torque control
- Independent control between front and rear axle

Efficiency mode eTVD – electric Torque Vectoring and Disconnect

Rotating parts Stationary parts

► Reduced splash losses

Efficiency

► Two piston areas per piston to optimize connect time

© 2024 BorgWarner Arctic Drive

© 2024 BorgWarner Arctic Drive

Hardware Design – eTVD Lamellas – Performance Mode

Hardware Design – eTVD Lamellas – Efficiency Mode

Hardware Design – eTVD Lamellas – Efficiency Mode

Hardware Design Disconnected parts – Efficiency Mode

Hardware Design – eTVD Oil management – Performance Mode

Hardware Design – eTVD Oil management – Efficiency Mode

Torque Management Systems eTV – electric Torque Vectoring

electric Torque Vectoring

2-Motor Torque Vectoring

eTV Overview

Super imposed torque vectoring

- Independent of propulsion torque from traction motor
- Outperforms equal 2-motor setup
- Compact and modular design for easy adoption
- Torque management up to 2500Nm available between 0-300kph
- ► Fast response time <50ms
- ► Efficient with low drag losses ~1%

Halfshaft Interface

Straight forward eTV – electric Torque Vectoring

Rotating partsStationary parts

Halfshaft Interface

Torque Vectoring Active eTV – electric Torque Vectoring

Straight ahead

Hard turn left

eTV Actuator - Concept Integrated Smart Drive Module

Inverter

- ► HW designed for ASIL D
- ► Aurix Tricore Multicore CPU
- Multi-board design for flexible packaging
- ► Fast response: <1 ms

E-motor (IPM)

- ► 800V architecture (400-960V)
- ▶ 11kW
- Max peak torque 50Nm (15Nm continuously)
- Operational speed >10.000rpm
- Externally induced abuse speed 20.000rpm

Torque Management Systems 2-Motor Torque Vectoring

System Comparison

System Comparison Torque Vectoring

© 2024 BorgWarner Arctic Drive

Available Torque Vectoring System comparison

▶ eTV

eTV provides Torque Vectoring fully independent from the requested propulsion torque

▶ eTVD

The eTVD system distributes the available propulsion torque to each wheel to create Torque Vectoring

Dual Motor

Maximum e-Motor torque is shared between propulsion and Torque Vectoring. Oversized motors needed to provide sufficient Torque Vectoring during acceleration

BORGWARNER

© 2024 BorgWarner Arctic Drive

Efficiency Energy Consumption WLTP

Vehicle configuration

- Midsize SUV, 2500kg
- AWD
- PMSM 170kW per axle

▶ eXD and eTV

Low additional losses, due to minimal delta speed during normal driving scenarios

▶ eTVD

The only system with higher efficiency and higher performance

Dual Motor

Highest energy consumption due to additional losses in motor and transmission

$\ensuremath{\mathbb{C}}$ BorgWarner 2023 - Drivetrain & Battery Systems

Cost Comparison Complete RDU

Cost comparison performed on a single iDM with open differential as reference.

▶ eXD

Lowest price of the products in the performance segment

▶ eTVD

Combines performance and efficiency in a cost-efficient way

► eTV

Highest price and highest additional performance

Dual Motor

Significant cost penalty for large motors. Cost level is very dependent on size of the motors

BORGWARNER

© BorgWarner 2023 - Drivetrain & Battery Systems

Cost Comparison Complete RDU including Disconnect

Cost comparison performed on a single iDM with open differential as reference

eTVD is the only Torque Vectoring system with a built in disconnect function for increased efficiency.

To reach a similar efficiency level for the other systems, additional disconnect hardware is needed. This increases the cost and complexity.

 $\ensuremath{\mathbb{C}}$ BorgWarner 2023 - Drivetrain & Battery Systems

Efficient Traction Safety and comfort

Conventional Traction Control Systems use friction brakes to reduce the disadvantages of open differentials

Adding an eTMS Systems leads to

- Superior traction at normal and slippery conditions without brake interventions
- Less wear on friction brakes and tires results in less particle emissions
- ► Comfort and premium feeling

© 2024 BorgWarner Arctic Drive

Efficient Traction Slippery Hill Example

Climbing 20% inclination split mue hill in Arjeplog, Sweden

► eXD inactive

- TCS Wheel Brake Active
- Average Torque: 1950 Nm
- Average Power: 11.2 kW

► eXD Active

- Bypassing differential
- Average Torque: 1250 Nm
- Average Power: 7.1 kW

Efficient Performance Vehicle Controllability

BEVs normally suffer from high vehicle weight, resulting in decreased lateral performance

Adding an eTMS Systems leads to

- Increased ability to follow requested path through corners and T-junctions
- Minimized risk for over or understeer in roundabouts even at acceleration during lane changes
- ► Firm and tight feeling of the steering
- ► Vehicle feels lighter

Efficient Performance Cornering example

- ► Open Differential (Reduced Traction)
 - Max Wheel Torque: ±1780 Nm
- ► eXD Active
 - Max Wheel Torque: ± 2670 Nm
 - Actuation power loss: <200W
- Brake based Traction Control (Calculated)
 - Max Wheel Torque: 2670 Nm
 - Friction braked torque: 900 Nm
 - eMotor Torque: 3770 Nm
 - Brake based power loss: 40kV

Example: Driving at dry conditions in 55km/h through a corner. Mid-sized SUV with lateral acceleration of 5m/s2.

© 2024 BorgWarner Arctic Drive

Efficient Performance Cornering example

- ► Open Differential (Reduced Traction)
 - Max Wheel Torque: ±1780 Nm
- ► eXD Active
 - Max Wheel Torque: ± 2670 Nm
 - Actuation power loss: <200W
- Brake based Traction Control (Calculated)
 - Max Wheel Torque: 2670 Nm
 - Friction braked torque: 900 Nm
 - eMotor Torque: 3770 Nm
 - Brake based power loss: 40kW

Example: Driving at dry conditions in 55km/h through a corner. Mid-sized SUV with lateral acceleration of 5m/s2.

THE NOW and THE FUTURE Portfolio Launch Outlook EV Torque Management

eTMS Global Product Roadmap

© 2024 BorgWarner Arctic Drive

SOFTWARE FACTORY

SOFTWARE DEVELOPMENT Center of Excellence

Market is moving from hardware defined software to software defined components and vehicles

Software is increasing in importance and becoming essential to sell hardware

With limited resources we need to be efficient on how we develop and maintain software VALUE FOR CUSTOMER

Enhanced Software Development Capability

Increased Software	Enable True Commonality
Quality & Robustness	and Reuse
Secure Maintainability for	Efficient Use of SW
up 15 years	Development Resources
Shorter Time to Market	Platform for Multiproduct Support

© 2024 BorgWarner Arctic Drive

Vehicle Control Software Strategy and Background

Vehicle Dynamics is the vehicle motion response, to driver input and environmental disturbances

- Background
 - The system reacts on driver requested inputs in combination with actual vehicle state signals to maximize the performance
- Preemptive torque distribution
 - The software calculates and predicts the vehicle behavior to give the driver a premium experience in any given situation
 - A feedback loop is used as a safety net if any unexpected situation occurs

Vehicle Control Software Creating additional value

► Modularity

 Same software can be used for multiple vehicle platforms, with different tuning options available

► Connected Vehicles

- Adjusted sensitivity based on available cloud data, i.e slippery road segments
- Disconnect Strategy influenced by the route from the GPS system

► Brand DNA

 Customized tuning together with our experts as standard deliver the important brand feeling for every OEM

Vehicle Control Software Functional description

© 2024 BorgWarner Arctic Drive

Sustainability

Our commitment - LCA – Green eFXD

Scope 1 & 2 reduction

-85% by 2030 from 2021 base year

Scope 3 reduction
-25% by 2030 from
2021 base year

DRIVING AMBITIOUS CORPORATE CLIMATE ACTION

© 2024 BorgWarner Arctic Drive

\$\$\$60%\$
of a BEV total
CO2 footprint comes
from the
material production

© 2024 BorgWarner Arctic Drive

© 2024 BorgWarner Arctic Drive

Material related emissons kg CO2 eq.

45 kg CO_2 eq.

© 2024 BorgWarner Arctic Drive

Emissions breakdown by material

Material related vs. **use-phase**

Up to 84 kg CO₂ eq

CO₂ eq emission allocated to eXD over lifetime (250 000 km) depending on grid mix

© 2024 BorgWarner Arctic Drive

CO₂ reduced components

Plastic housings:

BORGWARNER

-10.3 kg CO₂

PowerDrive Systems

2024 BorgWarner Arctic Drive, Arjeplog, Sweden

One Pagers – All Products

iDM – integrated Drive Module

Flexible Architecture + Reusable Building Blocks

- Deployment of proven and tested components
- Flexible system voltage, torque, power and packaging
 - eMotor
 - PMSM with low or no HRE-magnet or IM
 - Oil cooled or water cooled
 - Inverter
 - Si or SiC based on BW Viper Power Modules
 - Semi-integrated in main housing
 - Gearbox
 - Co-axial or off-axis layshaft transmission
 - Different Disconnect solutions available
- ► Full SW and controls capability
- Development and production in EU, US and China

Advanced: 800V Ultra Compact High Speed iDM

Dual Gearbox + Integrated Diff

- ► Gear ratio: > 13.0
- ► Integrated Differential
- High speed bearings

D-seg iDM with B-seg Packaging

Box Volume reduced by 24%

Fully integrated inverter

- 800V SiC high current density
- Planer component placement
- Compact assembly (< 4kg)

High Speed eMachine

- Pk Torque: > 250Nm
- Max Speed: ~23,000rpm
- ▶ 245kW @ 650 Vdc
- Submerged end coil cooling

eMotor - Overview

Advanced: 800V EESM; iDM with Compact Power flow

▶ RE free iDM with compact form-factor using integrated electronics and controls

Externally Excited Wound Rotor Ultra compact coaxial power flow Integrated stator – rotor excitation controls

Stator cooling - 25% more torque, Interpolar rotor cooling

Gen 1 with brushed excitation Gen 2 with brushless rotary transformer

BORGWARNER

 $\ensuremath{\mathbb{C}}$ 2024 BorgWarner Arctic Drive

Inverter Overview

- #1 non-captive supplier by 2025
- Market leader in 800V and SiC
- Strategic supplier partnership on SiC

CY 2021-2026 > 22 applications	Single or Dual Inverter Combo with Boost Converter	400 & 800V	300 – 900 Arms Peak
	Si & SiC	6-13 L	7-15 kg

BorgWarner Inverter portfolio covers all market needs

© 2024 BorgWarner Arctic Drive

Power Module Overview

- ► Power dense design
- ► Unique Double side cooled
- ► Cu or AL heatsinks
- ► Scalable & "future proof"
 - -SiC and Si support
- ► Highest A/mm2
- Market leading \$/Amp

HV-Box Overview

- ► OBC, Power Conversion of AC to DC for Onboard Charging of Vehicle Battery Pack (400V/800V)
- ► DC/DC, Power Conversion of HV-LV DCDC for Auxillary Vehilce Power (12V or 48V vehicle power)
- V2X, Power Conversion of DC to AC for Inverter Mode (V2X: Vehicle-to-Load, Vehicle-to-Vehicle, Vehicle-to-Grid)

iDM - integrated Drive Module

Integrated Drive Module (iDM) - System Supplier

BorgWarner Product, Development & System Integration Know How

iDM Product Family

Both 400V and 800V possible

Flexible Architecture + Reusable Building Blocks

- Deployment of proven and tested components
- Competitive development timing
- Component synergies
- Usage of common processes, standards, and tools
- Domain teams with deep knowledge / key

competencies

Integrated Systems Portfolio

iDM180 Concept Development

EFFICIENCY, COST AND WEIGHT OPTIMIZED PRIMARY DRIVE UNIT

System

- System Voltage
- Peak torque
- Peak power
- Peak efficiency
- Weight

> 95,5% * < 83kg

800V

>4000 Nm

>150 kW

- Water/Oil cooled
- Full SW incl. driveline controls

Compliance

- ASPICE L2 (SYS+SW)
- ASIL C(D)
- AUTOSAR R20-11

eMotor

- PMSM, hairpin, 180 OD
- Heavy rear earth free
- Oil cooled

Inverter

- Peak current 350Arms
- SiC Power Modules

Gearbox

- Off Axis Design
- Ratio 12.085
- Optional park-lock and disconnect

* e.g. D-Segment vehicle average WLTC loss is <750W

Loss Reduction Measures, iDM180 Concept

System Optimization

 Thousands of motors with optimized gear ratio and inverters compared

Gearbox

- Optimized high-speed bearing concept
- Reduced preloaded bearings
- Dry sump solution with minimal splash losses
- Smart cooling and lubrication strategy

Motor & Inverter

- ► Thinner Laminations
- Stator back-iron oil cooling
- ► Rotor oil cooling

Motor Controls

- BorgWarner Viper 8 Power Modules
 - Variable Gate Strength
 - Lowered Hotel Losses
- Switch frequency Optimization
- Multiple modulation techniques

Disconnect Solutions for Secondary Drive Unit

Differential Disconnect

- Disconnects differential gears from differential housing
- Optimized for low drag
 - No preloaded bearing losses in disconnect mode
- ► BLDC Actuator
- ► In concept development
 - Development vehicle available Q3 2024

Axle Disconnect

- Disconnects one of the halfshafts
- Cost optimized
- In production since 2022

Input shaft disconnect

- ► Solenoid based, 48V
- ► SOP 2024

PowerDrive Systems Global Footprint

EU Tech Centers covers: System, SW, Inverters, Gearbox and regional lead on eMotors

EU has production of 3in1 Systems, Inverters, eMotors and Transmissions

 $\ensuremath{\mathbb{C}}$ 2024 BorgWarner Arctic Drive

eMotor

eMotor - Product Families

Trade-off between energy consumption and EM cost

Energy Cost [€]

Energy Cost [€]

BorgWarner – IPM eMotor Roadmap Magnet

BorgWarner eMotor without Heavy Rare Earth is on its path to market introduction

© 2024 BorgWarner Arctic Drive

Inverter

Significant Bookings Across eProduct Categories

- #1 non-captive supplier by mid-decade (BEV and xEV) with growth expected to be significantly faster than market
- 29 Inverter application SOP's between 2015 and 2025
- Market leader in advanced solutions including 800V and SiC
- Strategic supplier partnership to ensure SiC device supply

Inverters In-Progress

BorgWarner – Power Electronics Foundation

BorgWarner Power Electronics made of mature and full range of building blocks

© 2024 BorgWarner Arctic Drive

HV-Box (OBC + DC/DC)

HV-Box Product Definition (Onboard Charger & DC/DC)

- ► OBC, Power Conversion of AC to DC for Onboard Charging of Vehicle Battery Pack (400V/800V)
- ► DC/DC, Power Conversion of HV-LV DCDC for Auxillary Vehilce Power (12V or 48V vehicle power)
- ► V2X, Power Conversion of DC to AC for Inverter Mode (V2X: Vehicle-to-Load, Vehicle-to-Vehicle, Vehicle-to-Grid)

© 2024 BorgWarner Arctic Drive

Power Module

Power Module Overview

- ► Power dense design
- ► Unique Double side cooled
- ► Cu or AL heatsinks
- ► Scalable & "future proof"
 - -SiC and Si support
- ► Highest A/mm2
- ► Market leading Amp/\$

BMS

Battery Controller Systems

- ► Battery Management System Controller for electric vehicle (EV) applications.
- ► Common Features
 - High Speed Microprocessor
 - Internal and external Watchdogs
 - Measures End to End Pack Voltage
 - Current sensor interfaces for measuring HV current
 - High-Voltage isolation detection
 - HV Interlock Loop monitoring/control
 - Synchronization with Cell monitoring controller
 - Contactor Controls
 - Pack Temperature
 - Pump control

Communication Interfaces

- CAN-FD
- CAN-PN
- LIN
- FlexRay

Mechanical

- IP 40D
- Outline: 200 X 150 X 35mm

© 2024 BorgWarner Arctic Drive

- A multiphysics vehicle model
- Embedded in a single software framework using Amesim
- Composed with sub-models / sub-DT developed and verified individually
- Compatible with different modeling level of details
- Able to assess technology impacts on different physics at vehicle level

- A multiphysics vehicle model
- Embedded in a single software framework using Amesim
- Composed with sub-models / sub-DT developed and verified individually
- Compatible with different modeling level of details
- Able to assess technology impacts on different physics at vehicle level

- A multiphysics vehicle model
- Embedded in a single software framework using Amesim
- Composed with sub-models / sub-DT developed and verified individually
- Compatible with different modeling level of details
- Able to assess technology impacts on different physics at vehicle level

Battery pack model

- A multiphysics vehicle model
- Embedded in a single software framework using Amesim
- Composed with sub-models / sub-DT developed and verified individually
- Compatible with different modeling level of details
- Able to assess technology impacts on different physics at vehicle level

- A multiphysics vehicle model
- Embedded in a single software framework using Amesim
- Composed with sub-models / sub-DT developed and verified individually
- Compatible with different modeling level of details
- Able to assess technology impacts on different physics at vehicle level

Inverter model

- A multiphysics vehicle model
- Embedded in a single software framework using Amesim
- Composed with sub-models / sub-DT developed and verified individually
- Compatible with different modeling level of details
- Able to assess technology impacts on different physics at vehicle level

- A multiphysics vehicle model
- Embedded in a single software framework using Amesim
- Composed with sub-models / sub-DT developed and verified individually
- Compatible with different modeling level of details
- Able to assess technology impacts on different physics at vehicle level

- A multiphysics vehicle model
- Embedded in a single software framework using Amesim
- Composed with sub-models / sub-DT developed and verified individually
- Compatible with different modeling level of details
- Able to assess technology impacts on different physics at vehicle level

- A multiphysics vehicle model
- Embedded in a single software framework using Amesim
- Composed with sub-models / sub-DT developed and verified individually
- Compatible with different modeling level of details
- Able to assess technology impacts on different physics at vehicle level

Transmission model

© 2024 BorgWarner Arctic Drive

Advanced EESM iDM

EESM's compared to PMSM

EESM Strengths

- ► No rare earth
- High efficiency at high speed and low loads
- ► Low material cost
- ► High power factor
- Low CO2 production in materials & manufacturing

BorgWarner Approach:

- Enhanced stator and rotor cooling
- Brushless resonant inductive excitation system
- Compatibility with compact gearboxes

EESM Challenges

- Rotor excitation needed
- Drive cycle efficiency
- ► Power density
- ► Continuous power
- Compatibility with concentric layshaft & coaxial gearboxes

EESM = Externally-Excited Synchronous Machine PMSM = Permanent Magnet Synchronous Machine

Interpolar Rotor Cooling

We extend cooling-at-thesource to include the space between rotor poles...

- Cooling on all sides of winding end turns
- Lam stack cooling channels
- Direct oil cooling of coil sides between poles

Rotary Transformer: Concept Selection

High shaft diameter needed for concentric iDM applications limit the use of designs with rotating ferrites that are not fully supported.

BorgWarner Brushless Module

BorgWarner HVH220 EESM

Brushless Excitation System – Key Innovations

BORGWARNER

- Leader in R&D for automotive eMotors and power electronics.
- System, application and manufacturing know-how.

- Leading institution on power electronics research.
- Ample experience in wireless power transfer.

Patented single PCB construction on receiver side

Patented optimized controls without need for rotor current sensor

Patented PCB-trace layout for minimizing AC losses

Resonant converter with patented tuning network locating all components on non-rotating side

Reducing EESM Size

Gen1 Brush EESM

▶ Brushes & slip rings must be sealed off from oil spray

Gen2 Brushless EESM

- Rotary transformer and rectifier take up less space than brushes
- Can be located in oil spray area, reducing overall eMotor size
- Reduces drag loss due to shaft seals

Advanced HFHE iDM

System Target

D-segment vehicle performance
B-segment packaging size

iDM180-HF (250kW variant)

Dual Gearbox + Integrated Diff

- Gear ratio: > 13.0
- Integrated Differential
- High speed bearings
- Volume reduction by > 10%

Fully integrated inverter

- ▶ 800V SiC high current density
- Low stray inductance
- Planer component placement
- Compact assembly (< 4kg)

High Speed eMachine

- ► Pk Torque: > 250Nm
- ► Max Speed: ~23,000rpm
- Current density: > 33 Arm/mm2
- ► 245kW @ 650 Vdc
- Submerged end coil cooling

High Speed Differential

BORGWARNER

Advanced Developments: Electric Powertrains

Main objective: translate wheel requirements into preliminary powertrain designs

Vehicle level requirements

System optimization

Preliminary design

Electric powertrain development workflow

Concept optimization Initial specifications and requirements Preliminary design – key attributes defined

Detailed analysis and component optimization and refinement

Validation and verification

Prototype bench testing – model calibration

Vehicle level testing – control calibration

Application example: C segment vehicle

Parameter	Value
Vehicle mass	2000 [kg]
Wheel radius	0.32 [m]
Drag coef.	0.23 [-]
Roll coef.	0.009 [-]
Front. Area	2.22 [m^2]

- RWD vehicle
- Initial EM database consisting of ~1000 2D geom.
- Single V-IPMSM, Oil-cooling
- Single speed transmission
- Nominal Vdc 800V
- Two optimization objectives:
 - EM cost
 - Energy consumption
- Overloading time 60s from 60 deg. C

Trade-offs between energy consumption and EM cost

Analysis of optimal results

- Clear trade-off between optimization objectives
- For the included geometries, higher transmission ratios reduce EM cost at a slight detriment of energy cost.
- Lower ratios and larger machines operating at lower speeds improve energy consumption.

EM Cost [€]

Impact of overloading requirements

Energy Cost [€]

EM Cost [€]

Energy Cost [€]

BORGWARNER

EM Cost [€]

Technology Demonstrators

2024 BorgWarner Arctic Drive, Arjeplog, Sweden

TECHNOLOGY integrated Drive Module (iDM)

► VEHICLE PLATFORM WELTMEISTER (WM) EX5

VEHICLE SPECIFICATION

Front Propulsion

- o Motor Type PMSM
- o Motor Power 120 kW
- o Wheel Torque 2 800 Nm

Battery

Nominal Voltage 400 V

KEY FEATURES and BENEFITS

INTEGRATED DRIEVE MODULE (iDM)

WATER-COOLED ONE-SPEED GEARBOX

SLIP AND ANTI-JERK CONTROLS

OPTIONAL PARKLOCK

Reference Vehicle - eLSD

► VEHICLE PLATFORM Kia EV6 GT

VEHICLE SPECIFICATION

Dual Motor - 430kW

Front Propulsion

- o Open Differential
- o Motor Power 160 kW

Rear Propulsion

- eLSD (None BorgWarner)
- \circ Motor Power 270 kW

Battery

- Nominal Voltage 800 V
- o Capacity 77 kWh

KEY FEATURES

eLSD at Rear axle (None BorgWarner)

Standard Production Vehicle

TECHNOLOGY electric Cross Drive (eXD)

VEHICLE PLATFORM Volvo C40 Recharge

VEHICLE SPECIFICATION

Dual Motor

Front Propulsion

- Retrofitted eXD (eFXD)
- o Integrated eXD Torque 2 500 Nm
- o Motor Type PMSM
- o Motor Power 170 kW
- o Wheel Torque 3 300 Nm

Rear Propulsion

- Retrofitted eXD (eRXD)
- o Integrated eXD Torque 2 500 Nm
- o Motor Type PMSM
- o Motor Power 170 kW
- o Wheel Torque 3 300 Nm

Battery

- Nominal Voltage 400 V
- o Capacity 78 kWh

KEY FEATURES and BENEFITS

INTEGRATED DRIVE MODULE (iDM) FEATURING eXD

VEHICLE DYNAMICS CONTROL SOFTWARE HANDLING SLIP CONTROLLER, LONGITUDINAL AND LATERAL TORQUE

CUSTOMER INTERFACE FOR VEHICLE TUNING ON-THE-FLY

POSSIBILITY TO EMULATE MULTIPLE VEHICLE PROPULSION ARCHITECTURES

TECHNOLOGY electric Torque Vectoring Disconnect (eTVD) 2.0

VEHICLE SPECIFICATION Dual Motor

Front Propulsion

- Motor Type PMSM
- o Motor Power 150 kW
- o Wheel Torque 3 000 Nm

Rear Propulsion

- o Retrofitted eTVD 2.0
- Torque per Wheel 2 600 Nm
- o Motor Type PMSM
- o Motor Power 200 kW
- o Wheel Torque 4 300 Nm

Battery

- o Nominal Voltage 400 V
- o Capacity 78 kWh

KEY FEATURES and BENEFITS

ELECTRIC TORQUE VECTORING DISCONNECT (eTVD) – DUAL CLUTCH SYSTEM

VEHICLE DYNAMICS CONTROL SOFTWARE HANDLING SLIP CONTROLLER, LONGITUDINAL AND LATERAL TORQUE

CUSTOMER INTERFACE FOR VEHICLE TUNING ON-THE-FLY

 $\ensuremath{\mathbb{C}}$ 2024 BorgWarner Arctic Drive

TECHNOLOGY iDM w/ electric Torque Vectoring (eTV)

VEHICLE PLATFORM Polestar 2

VEHICLE SPECIFICATION

Dual Motor

Front Propulsion

- Motor Type PMSM
- o Motor Power 150 kW
- o Wheel Torque 3 000 Nm

Rear Propulsion

- o Retrofitted eTV
- o eTV Torque 2 000 Nm
- Motor Type PMSM
- \circ Motor Power 170 kW
- o Wheel Torque 3 300 Nm
- o Inverter SiC

Battery

- Nominal Voltage 400 V
- o Capacity 78 kWh

KEY FEATURES and BENEFITS

ELECTRIC TORQUE VECTORING (eTV) – ELECTRIC MOTOR VECTORING

FULL IN_HOUSE INTEGRATED DRIVE MODULE SCOPE – INVERTER, MOTOR, GEARBOX

VEHICLE DYNAMICS CONTROL SOFTWARE HANDLING SLIP CONTROLLER, LONGITUDINAL AND LATERAL TORQUE

Driving Rules

- A BorgWarner expert always attends in the vehicles to support during the drive
- ► Traffic signs must be observed
 - Stop signs and direction signs are placed at the entrances to the tracks to provide important safety information
- ► Don't drive beyond your skills
 - All drivers are responsible for their own driving and must keep safety first in mind
 - The BorgWarner co-driver is obliged to abort the drive if safety is compromised

Winter test facility - Arjeplog Garage and Office

© 2024 BorgWarner Arctic Drive

Winter test facility - Arjeplog Overview

© 2024 BorgWarner Arctic Drive

Winter test facility - Arjeplog Small Handling

© 2024 BorgWarner Arctic Drive

Winter test facility - Arjeplog Big Handling

© 2024 BorgWarner Arctic Drive

Winter test facility - Arjeplog Circles

© 2024 BorgWarner Arctic Drive

Winter test facility - Arjeplog Straight / Dynamic Area

© 2024 BorgWarner Arctic Drive

eTVD – performance upgrade

- System performance is improved by optimizing the hydraulic layout
 - Flow restrictions/tight sectors removed
- ► Connect time is reduced by >200ms
 - Time to kisspoint reduced by 55%
 - Time to torque transfer (300Nm) reduced by >30%
 - Time to torque transfer (300Nm): 400 ms
 - Time to max torque: 600ms

